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Abstract 10 

Use of data-limited methods for setting target catches is increasing in the Northeast U.S., 11 

but there remains considerable uncertainty over which methods may be suitable for 12 

stocks in the region.  We retrospectively evaluated the ability of data-limited methods to 13 

set target catches close to the overfishing limit for data-rich stocks in the Northeast U.S. 14 

Methods explored include options that would be used in truly data-poor cases (i.e., catch-15 

only methods), but we also evaluated methods with different data requirements for stocks 16 

that have information beyond a catch time series. The majority of options we explored 17 

that used average catches over some portion of the time period, or adjusted the recent 18 

catches based on trends in an index were sensitive to the level of historical exploitation.  19 

Such methods produced target catches above the overfishing limit for stocks that had a 20 

history of overfishing, or target catches that were overly conservative for stocks with a 21 

history of light exploitation. Careful consideration of the level of historical exploitation 22 

rates, if possible, is therefore needed if using such approaches are to be applied. Catch 23 

curve methods, which require catch-at-age information, were the only approaches not 24 

sensitive to the level of historical exploitation, and were largely effective at setting target 25 

catches close to the overfishing limit, even for stocks with intense historical exploitation 26 

rates.  However, there were cases where catch curve methods produced unsustainable 27 

target catches, particularly for stocks with episodic recruitments, such that care is needed 28 

when implementing catch curve methods.   29 
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1. Introduction 36 

When possible, fisheries management actions are based on estimates of current stock 37 

status and management targets produced from complex, age-structured stock assessment 38 

models (Geromont and Butterworth, 2015). These models require large amounts of data, 39 

as well as analyst expertise and time to construct and run the model, and summarize 40 

model output.  In the U.S., when such “data rich” assessments are not possible, catch 41 

limits must still be set for federally-managed fisheries, and a number of data-limited 42 

methods have been developed to set catch limits for cases with varying amounts of data.   43 

The reasons preventing age-structured or less complex assessment models from being 44 

used vary.  In truly data-poor cases, the necessary data are not available to run an 45 

assessment model, and the available catch time series may need to be used, often with 46 

assumptions about life history and relative stock status, to set target catches (MaCall, 47 

2009; Berkson et al., 2011; Dick and MacCall, 2011).  Stocks may have sufficient data to 48 

conduct an assessment, but the model results may be deemed too uncertain to be the basis 49 

for setting catch targets.  One possible reason for this uncertainty is that some of the data 50 

may be uninformative, or different datasets may provide conflicting signals regarding 51 

population trend that cannot be reconciled given model assumptions.  Such a case can be 52 

thought of as data-rich but information-poor, and more data-moderate approaches may be 53 

used that utilize available information beyond a catch time series, including indices of 54 

abundance (e.g., Geromont and Butterworth, 2014) and age-structured information (e.g., 55 

Thorson and Cope, 2015; for simplicity we herein refer to both data-poor and –moderate 56 

approaches for setting catch targets as data-limited methods).    57 

Recent reviews conducted to determine the methods for setting target catches in U.S. 58 

fisheries revealed that data-limited methods were the most common basis for setting the 59 

acceptable biological catch (ABC) and annual catch limits (ACL; Berkson and Thorson, 60 

2014; Newman et al., 2015).  As of 2014, 30% of the ACLs were based on conventional, 61 

data-rich stock assessments, and 70% used data-limited methods (59% were data-poor 62 

and 11% were data-moderate; Newman et al., 2015). However, use of data-limited 63 

methods was not uniform across the Regional Management Councils, as regions such as 64 

the Caribbean and Western Pacific relied heavily on data-limited methods, while the 65 

Northeast U.S. (comprised of the Mid-Atlantic and New England regions) relied 66 

primarily on data-rich stock assessments (Berkson and Thorson, 2014; Newman et al., 67 

2015).   68 

While the Northeast U.S. may be thought of as data-rich region, use of data-limited 69 

methods is increasing. In the Mid-Atlantic, age-based assessments for Atlantic mackerel 70 

(Scomber scombrus) and black sea bass (Centropristis striata) did not pass review 71 

(Deroba et al., 2010; NEFSC, 2012), and explorations of a wide range of data-limited 72 

methods were used to help inform the determination of the ABC (Wiedenmann, 2015; 73 

McNamee et al., 2015). In New England, recent assessments did not pass review for the 74 

Georges Bank stocks of Atlantic cod (Gadus morhua) and yellowtail flounder (Limanda 75 

ferruginea), and for witch flounder (Glyptocephalus cynoglossus), and data-limited 76 

approaches were used to set the associated ABCs (Legault et al., 2014; NEFSC, 2015a, 77 

2015b).  In all of these examples, the use of data-limited methods has been viewed as an 78 

interim measure until a new assessment model can be developed to address the issues 79 

identified in the failed assessments.   80 
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Although exploration of data-limited methods has increased in the Northeast U.S., 81 

there remains considerable debate about which methods may be suitable for stocks in the 82 

region. Developing support for or against particular data-limited methods requires both 83 

simulation testing (e.g., Wiedenmann et al., 2013; Carruthers et al., 2014; Geromont and 84 

Butterworth, 2015) and validation using information from stock assessments (Kokkalis et 85 

al., 2017; Sagarese et al., in press). Our aim in this paper was to identify effective data-86 

limited methods for setting catch targets using information from data-rich stocks in the 87 

region.  We retrospectively evaluated the performance of data-limited methods with 88 

varying data requirements encompassing methods that would be used for truly data-poor 89 

stocks, to more data-intensive methods that would be used for data-rich, information poor 90 

stocks.  Using the most recent stock assessment as the source of information for historical 91 

stock dynamics, we compared the target catches from the data-limited methods to 92 

estimates of the overfishing limit (OFL; the catch that defines overfishing).  Our focus 93 

was to identify which options, if any, were able to limit overfishing without being too 94 

conservative.   95 

2. Methods  96 

2.1 Data-limited methods 97 

We applied 24 data-limited methods for setting target catches to 19 stocks managed 98 

by the New England and Mid-Atlantic Fishery Management Councils (NEFMC and 99 

MAFMC, respectively; see Table 1 for a list of the stocks). These stocks have a varied 100 

history of exploitation rates, although higher exploitation rates were generally observed 101 

in the 1990s than more recently (Fig. 1). The data-limited methods we used can be 102 

broadly classified into four categories: average catch methods, index-based methods, 103 

catch curve methods, and production models.  These methods are detailed in Table 2, but 104 

we provide a brief summary of the general approaches here.  Average catch methods set 105 

the target catch as some summary statistic (e.g., the mean or median catch) over part or 106 

all of the available catch data. Most of the average catch methods we explored only 107 

required a catch time series, although one method (DCAC; MacCall, 2009) also required 108 

some additional assumptions (Table 2).  Index-based methods are an extension of the 109 

average catch methods, adjusting recent average catches based on trends in an index of 110 

abundance to set the target catch. These methods therefore require an index of abundance 111 

and total catch over time.  Catch curve methods aim to estimate total mortality (Z) using 112 

numerical catch-at-length or catch-at-age data.  Although length data may be more 113 

readily available in data-limited cases, we used only catch-at-age data because length 114 

data were often not reported in the assessments.  Using catch-at-age data, Z is estimated 115 

by fitting a log-linear model to the fully-selected ages, and is then used with other 116 

assumptions depending on the method (Table 2) to adjust the recent average catch to 117 

generate a target catch. Finally, production models use an underlying surplus production 118 

model to estimate current biomass and reference points (more detail on the production 119 

models is provided below).  120 

Our goal was not to test every possible data-limited method, but rather to understand 121 

the behaviors of a subset of methods in application to data-rich stocks. Therefore, the 122 

methods we used are not an exhaustive list of the possibilities. We omitted methods that 123 

required a complete time series of catch data (i.e., DB-SRA and its variants; Dick and 124 

MacCall, 2011) because complete catch histories were not available for any of the stocks 125 

in the region. In addition, we omitted the majority of methods that required assumptions 126 
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about absolute current stock biomass (e.g., 10,000 mt), current relative status (e.g., the 127 

ratio of current to unfished biomass, or B /B0), or relative change in abundance over the 128 

time series (e.g., a 30% decline).  We included two methods that required such 129 

assumptions.  The first is an average catch method that requires a user-specified 130 

assumption about stock depletion over the time period of available catches (DCAC) 131 

because this approach has been used across the U.S. (primarily in the Pacific; Newman et 132 

al., 2015; PFMC, 2016) and it has been suggested as a potential fallback method for some 133 

assessments in the Northeast U.S. (ASMFC, 2015a, 2015b; Rago, 2017). DCAC adjusts 134 

the historical average catch to account for a one-time “windfall” catch that is the result of 135 

stock depletion, producing an estimate of yield that was likely to be sustainable over the 136 

same time period of available catch data. We explored fixed assumptions about depletion 137 

across stocks and across years in DCAC, assuming 60% and 80% declines in biomass 138 

relative to unfished biomass, B0.  We also explored a “data-rich” version of DCAC when 139 

biomass is known (MacCall, 2011), for comparison with the methods requiring multiple 140 

assumptions in the absence of biomass estimates (Table 2).  The second method we used 141 

falls into the production model category (SPMSY), and require bounds for uniform 142 

distributions of relative status B/B0 in the first and last years of available catch data.  143 

Martell and Froese (2013) provide guidance on the bounds based on the catch in those 144 

years relative to the maximum catch in the time series, and we used their recommended 145 

bounds here (Table 2).  146 

2.2. Inputs and stock information  147 

For each stock we used the most recent stock assessment that passed review as the 148 

primary source of information (Deroba, 2015; Legault et al., 2013; NEFSC, 2012, 2013, 149 

2015a, 2017; Terceiro, 2016).  We compared target catches from each data-limited 150 

method with the estimated OFL, so we needed all the necessary inputs for each method, 151 

as well as the estimated OFL over time for each stock. Time-varying estimates of the 152 

OFL were not provided in the assessments, but we calculated the OFL for the jth stock in 153 

each year, t, with 154 

�����, �� = 
 ���, �, ��������
���, �, �������� + ���, �, ��

����

�
���, �, �����, �, ���1155 

− ������,�,��� !"���#��,�,���� 156 

where a denotes age, N, s, and FMSY are the model estimates of numerical abundance, 157 

fishery selectivity (proportion-at-age subject to fishing mortality), and limit fishing 158 

mortality rate, W is the observed weight in the catch, and M is the assumed rate of natural 159 

mortality. Note that this is an estimate of the OFL in hindsight from the most recent 160 

assessment for each stock, and is not the OFL that was specified for management 161 

purposes following earlier assessments.   162 

Inputs to the data-limited methods obtained from the stock assessments were the 163 

annual observations of total catch (by weight) and numerical catch-at-age, and aggregate 164 

indices of abundance (kg per tow in the spring and fall coastwide bottom trawl survey) 165 

used in the assessment models. When long time periods of catch data were available, we 166 

omitted data prior to 1978as very large catches occurred by foreign fleets prior to the 167 

passing of the Magnuson Act (Sosebee et al., 2006), and such large catches could 168 
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influence methods that rely on an average catch over an appropriate time period.  Catch-169 

at-age data included a plus group, where catches across older ages are aggregated into a 170 

single age class.  We explored the effect of including or excluding the plus group in the 171 

catch curve estimation of Z, and found that excluding the plus group generally resulted in 172 

smaller estimates of Z, with estimates close to or below 0 (indicating increased 173 

abundance-at age in the catch) produced more frequently than when the plus group was 174 

included(Fig. 2).  We therefore included the plus group in the calculation of Z.  For black 175 

sea bass (Centropristis striatus) only the numerical fall index was available, and for 176 

bluefish (Pomatomus saltatrix) we used the recreational CPUE index from the Marine 177 

Recreational Information Program (MRIP), as bluefish are likely poorly sampled in the 178 

bottom trawl survey.  179 

The catch curve methods and DCAC required additional life history information 180 

(Table 2). DCAC requires estimates of M, FMSY/M, and BMSY/B0.  For BMSY/B0we used the 181 

spawning potential ratio (SPR) proxies used to define reference points for each stock, 182 

which was 0.4 for all but two stocks (Table 3), and this value is identical to the mean 183 

value across stocks estimated in the meta-analysis of Thorson et al. (2012).  We used the 184 

assumed M from each assessment, as well as the ratio of the assessment-estimated FMSY to 185 

the assumed M.  Values for FMSY/M were generally comparable to the mean family-level 186 

estimates from the meta-analysis of Zhou et al. (2012), although some of our estimates 187 

were considerably higher (Table 3).  Using these values as inputs to DCAC should reduce 188 

uncertainty and potentially improve performance since these values were also used to 189 

calculate the OFL.  MacCall (2009) suggests using DCAC only when M≤ 0.2yr-1, and 190 

also using FMSY/M ≤ 1,otherwise the correction factor might be too small.  Our estimates 191 

of M were mostly ≤ 0.2yr-1, but FMSY/M values were sometimes > 1 (Table 3).  To test the 192 

sensitivity of DCAC to our assumptions, we used the data-rich version that circumvents 193 

these assumptions using changes in biomass estimates to adjust the catch (Table 2).  194 

Inputs for the catch curve methods beyond the catch-at-age data were used to estimate 195 

FMSY using various approaches (Table 2). The inputs for the various methods included 196 

maximum age, steepness of the stock-recruit relationship, von Bertalanffy growth 197 

parameters, length-weight conversion parameters, and also the length-at-first-capture and 198 

–at-full selection in the fishery. Steepness values were obtained from Myers et al. (1999).  199 

Maximum age and the parameters for the von Bertalanffy model were taken from the 200 

current or past assessments when available, or from Fishbase (www.fishbase.org).  201 

Parameters for converting length to weight were obtained from Wigley et al. (2003).  We 202 

defined length-at-full selection as the mean length calculated from the von Bertalanffy 203 

growth model corresponding to the age at 95% selection in the fishery. Defining length-204 

at-first capture was challenging for each stock.  For the lone method that required this 205 

input, we explored three versions where length-at-first capture was assumed to be 10, 30, 206 

and 50% of the asymptotic length (Table 2).  Parameters values for each stock are listed 207 

in Table 3.   208 

2.3 Application  209 

The data extracted for each stock were then used in the data-limited methods to 210 

calculate target catches.  We used the data-limited toolkit (DLMtool; Carruthers and 211 

Hordyk, 2017) for our analyses, which is an R (R Core Team, 2017) package developed 212 

to test and apply data-limited methods for real-world applications. DLM tool has two 213 

distinct components, a management strategy evaluation (MSE) simulation modules to test 214 
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methods, and an application side where the available data for a stock are input to estimate 215 

the target catch for each method. We used the application portion of DLMtool (and not 216 

the MSE), which has a wide range of built-in methods of varying complexity, but it also 217 

allows users to specify their own unique options, or to modify the existing methods as 218 

needed.  All but three of the methods we used in DLMtool were either existing or slight 219 

modifications of existing options.  We added the data rich version of DCAC 220 

(DCAC_DR), thePlanB_3 index-based method, currently used as a fallback approach in 221 

New England (NEFSC, 2015a; code obtained here 222 

https://github.com/cmlegault/PlanBsmooth/wiki/Basics), and the M_CC catch curve 223 

method that sets FMSY equal to the assumed M (Table 2). We also modified all of the 224 

catch curve methods to account for low estimates of Z.  All of the catch curve methods 225 

estimate the mean F in the last three years using the estimated Z and assumed M (F = Z – 226 

M), and adjust the average catch over this period up or down is F is below or above the 227 

estimated FMSY, respectively (Table 2).  When M> Z, DLMtool uses a default F of 228 

0.005yr-1, but we used a minimum F of 0.05yr-1 for all catch curve methods, but also 229 

compared the impact of this minimum to the lower default value.   230 

DLMtool includes methods that use underlying production models, including DB-231 

SRA (Dick and MacCall, 2011), which we did not use due to the full catch time series 232 

requirement, and SPMSY (the simple method for estimating MSY; Martell and Froese, 233 

2013), which we did use.  SPMSY is similar to DB-SRA, in that it estimates MSY-based 234 

reference points and the OFL in the last year, but it does not require a complete catch 235 

time series (Table 2).  In addition to SPMSY, we included a Schaefer surplus production 236 

model in our analysis (Schaefer, 1954), implemented outside of the DLMtool framework.  237 

Parameters for the surplus production model (r, K, and starting biomass relative to K) 238 

were estimated by fitting the model to the available indices of abundance (and estimating 239 

catchability for each survey)using a maximum likelihood approach (assuming lognormal 240 

observation errors in the indices, with even weighting to each index when multiple were 241 

available) and assuming catch data are known for each stock (Fig. 3).  The target catch 242 

was set to the estimate of the OFL in the last year (Y) of each model fit (OFL = r/2 •B(Y); 243 

Table 2). We considered other variations of production models where BMSY is not 244 

necessarily K/2(Pella and Tomlinson, 1969; Fox, 1970), but ultimately decided on using 245 

the Schaefer model, as it allows for more direct comparisons with SPMSY (which 246 

assumes Schaefer dynamics). A production model fit to catch and survey data is a simpler 247 

form of an assessment, and we are making comparisons to estimates of the OFL from 248 

age-based assessments (Arnold and Heppell, 2015; Cope et al., 2015). The debate over 249 

which model may be “correct” has a long history in fisheries; we are not attempting to 250 

address the debate here.  Rather, here we asked that if the true dynamics of a stock were 251 

those estimated in the age-based model, what would the impact have been if a production 252 

model were used to set target catches (Punt and Szuwalski, 2012)? 253 

 For each data-limited method, DLMtool produces a distribution of target catches 254 

(Ctarg) based on the user-specified number of iterations. The stochastic calculation of the 255 

target catch varies by method, with some methods relying on user-specified levels of 256 

uncertainty (an assumed CV for many of the parameters).  Other methods rely on the 257 

uncertainty in estimated values, such as the standard deviation of the average catch over 258 

some time period, or in the standard error of estimates of the slope and intercept 259 

parameters from a linear fit to the index of abundance over time, or in the log-260 
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transformed numerical catch at age in a catch curve analysis.  For all inputs that required 261 

a specified CV, we used the default CVs specified in DLMtool across stocks. The highest 262 

default CV we used was 0.2, which was for inputs likely to be more uncertain than others 263 

(e.g., M or relative depletion; Table 2), and resulted in distributions generally ranging 264 

from 0.5 to 2 times the specified mean for such inputs (Table 2).  265 

2.4 Performance  266 

 We calculated the distribution of target catches using 1,000 iterations for each of the 267 

methods in DLMtool from 1990 to 2012 for each stock. We used the median of the 268 

distribution of the target catch for each stock / year / method as our value for comparison 269 

with the estimated OFL (Eq. 1), with a one year lag.  Inclusion of a lag was intended to 270 

mimic the process of setting target catches, where under the best of circumstances the 271 

target catch would be calculated using data from the previous year.  We selected 2012 as 272 

the cutoff to reduce the impact of uncertainty in more recent assessment estimates based 273 

on retrospective patterns.  Recent assessments for Georges Bank cod, Georges Bank 274 

yellowtail flounder, and witch flounder did not pass review due to increasingly strong 275 

retrospective patterns.  We still included these stocks in our analyses, using the most 276 

recent assessment that passed review, and only using data through 2010, assuming that 277 

model estimates become more stable moving back in time.  However, changes to future 278 

assessments for these or other stocks that dramatically change historical estimates would 279 

alter our estimates of the OFL, and potentially our conclusions.  280 

We also compared target catches for each stock to the target catches set by 281 

management. We obtained management target catches from 2000- and 2004-onward for 282 

Mid-Atlantic and New England stocks, respectively, for comparison with the target 283 

catches estimated by the different data-limited approaches.  From 2010-onward the target 284 

catches were considered the ABC, but prior to 2010 they were often referred to as the 285 

total allowable catch (TAC).For simplicity we refer to them as the original target catches 286 

(OTC), noting that they were not always set to achieve the OFL (or close to it), either in 287 

cases without an assessment or in cases of rebuilding. 288 

Because we used static estimates from real stocks it is not possible to remove the 289 

target catch (i.e., there is no feedback between the catch, stock, and data like in MSE 290 

simulation models).  Our annual estimates of the target catch must therefore be viewed as 291 

independent from one another, and we cannot calculate common MSE performance 292 

metrics such as the probability of overfishing or the change in biomass over time in 293 

relation to each method.  Nevertheless, our approach is a useful exploration of what the 294 

target catch would have been under a data-limited method in any particular year from 295 

1990-2012. 296 

3. Results 297 

Fig. 4 shows the range of median catch / OFL estimates for each method across 298 

stocks and years, separated by historical fishing intensity.  For each method, a wide range 299 

of target catches (relative to the OFL) occurs for stocks with and without a history of 300 

overfishing.  For stocks without a history of overfishing, most methods tended to produce 301 

target catches below the OFL (Fig. 4A).  Exceptions to this were the Schaefer surplus 302 

production model, and the catch curve methods BK_CC3 and BK_CC5 (see Table 2 for 303 

more details on each method), which had a median catch/ OFL above 1.  In contrast, most 304 

methods resulted in target catches above the OFL for stocks with a history of overfishing, 305 



 

 8 

with only the index-based approach Itarget4 and catch curve method BK_CC1 having a 306 

median catch / OFL below 1 (although other approaches had medians close to 1; Fig. 4B).  307 

It is evident from Fig. 4 that the performance of the methods is sensitive to the 308 

exploitation history for each stock.  This result is expected given that many of these 309 

approaches use an average catch over some time period as the foundation for setting the 310 

target catch.  The time period of catches (and other inputs) used by each method varies, 311 

but was typically 3, 5, or all available years of data.  For each stock in each year we 312 

calculated the mean F / FMSY over the relevant period for a method (i.e., the last 3 years if 313 

the method uses an average catch over the last 3 years) and compared these estimates to 314 

the target catch / OFL from each method (Fig.5).  The average catch and index-based 315 

methods resulted in target catches / OFL that were positively correlated with the mean F / 316 

FMSY over the same period (Fig. 5A-J).  Weaker correlations (R2< 0.5) occurred for 317 

approaches that used the all available years of catch data compared to those that used 318 

only the most recent three or five years of data (R2 ≥ 0.8).  The slopes of the fit differed 319 

greatly across methods, although most had positive slopes, indicating sensitivity to recent 320 

or historical fishing intensity.  Many of the average catch approaches and both production 321 

model approaches had slopes > 1, resulting in a greater magnitude of overfishing for 322 

stocks that had experienced higher rates of historical overfishing, particularly those that 323 

used all available catch data (but excluding years prior to 1978). One approach that uses 324 

the average catch over the available time period is DCAC (MacCall, 2009), and we found 325 

that the assumed depletion level (DCAC_20 and DCAC_40) did not have a large impact 326 

on the target catch / OFL from this method (Fig.5H-I), and performance using the data-327 

rich version (DCAC_DR; where changes in assessment-estimated biomass are used to 328 

adjust the catch; Table 2) was similar to the other DCAC implementations (Fig.5J). 329 

 Catch curve methods, on the other hand, were not correlated with the exploitation 330 

rate during the relevant period (non-significant slopes for all but Fdem_CC; Fig.5Q-V).  331 

Target catches from these methods were often close to the OFL despite intense 332 

overfishing, but occasionally target catches were well above the OFL following low 333 

exploitation rates.  Insensitivity to historical exploitation rates (which are often unknown) 334 

is a desirable behavior of a data-limited method, but it is problematic that the target catch 335 

from these methods was well above the OFL for some stocks.  The stocks with very high 336 

target catch / OFL were Atlantic herring (Clupea harengus) and SNE/MA yellowtail 337 

flounder (Fig.6A), but more stocks would have had very high target catches / OFL for 338 

certain methods if we had used the default minimum F in DLMtool (we used a minimum 339 

of 0.05yr-1 compared to the default of 0.005yr-1; Fig.6B).  For Atlantic herring, pollock 340 

(Pollachius virens), GOM haddock (Melanogrammus aegelfinus), and white hake 341 

(Urophycis tenuis), estimates of Z from the catch curve analysis were occasionally at or 342 

below the assumed M, resulting from high variability in recruitment. This problem was 343 

exacerbated by methods that resulted in high estimates of FMSY, as assuming FMSY = M 344 

(the M_CC method) mitigated against very high catches for these stocks (Fig.6B).  345 

SNE/MA yellowtail was not impacted by the assumed minimum F (Fig.6B), and the 346 

other yellowtail flounder stocks also had relatively high target catch / OFL estimates, on 347 

average (Fig.6A), and these were stocks where Z was consistently underestimated (albeit 348 

above the assumed M; Fig.2B).  Interestingly, these stocks have the fewest age classes 349 

used in the assessment (6), and the age-at-full selection in the catch was typically age 2 or 350 

3, leaving only 3-4 points for the catch curve regression.  This limited number of ages 351 
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may be contributing to the consistent underestimation of Z for these stocks, which causes 352 

the target catches from the catch curve approaches to overestimate the catch relative to 353 

the OFL.   354 

 Our measure of performance thus far has been how close the target catches would 355 

have been to the OFL in a given year for a stock, and we found that many of the options 356 

would have resulted in continued under- or overexploitation, depending on the intensity 357 

of exploitation experienced (Fig.5).  Despite continued overfishing for a stock, the data-358 

limited approaches could still be improvements over the existing management advice. Fig. 359 

7 shows the proportion of times that the data-limited methods set catch targets closer to 360 

the OFL than the original target catches (we use OTC for simplicity, noting that the target 361 

catches were considered the ABC from 2010-onward, but were referred to as the TAC, in 362 

earlier years). The ratio of the OTC to the OFL is based on the current estimates of the 363 

OFL from the most recent assessment for a stock, and not what was estimated to be the 364 

OFL in earlier assessments at the time the target catch was set.  In cases where the OTC 365 

was below the OFL (either due to using a buffer or due to earlier assessments / 366 

projections underestimating biomass, or both), data limited methods were more often 367 

than not more conservative than the OTC.  When the OTC was above the OFL (largely 368 

due to assessments / projections overestimating biomass; c.f. Wiedenmann and Jensen, 369 

2018) many of the data-limited options were improvements over the OTC.  The average 370 

catch approaches that used the recent average catch (3-5 years) were improvements over 371 

OTC 60-74% of the time. The index-based approaches also used the average catch in the 372 

last 3-5 years, and as a results were also an improvement over the OTC (66-73% of the 373 

time).  All but one of the catch curve approaches (BK_CC5) were an improvement over 374 

the OTC more often than not, while the production model approaches were more 375 

frequently farther above the OFL than the OTC (Fig.7).   376 

 The magnitude of the improvement (or worsening) of the data-limited target catch, 377 

on average, compared to the OTC is shown in Fig.8 for a subset of methods.  The data-378 

limited methods were often closer to the OFL than the OTC when the OTC was well 379 

above the OFL. For the average catch and index-based methods, the largest 380 

improvements occurred for the most conservative options, but with the tradeoff of 381 

producing target catches well below the OFL when the OTC was at or below the OFL 382 

(Fig.8A,B). The three catch curve methods shown (BK_CC1, M_CC and YPR_CC) 383 

produced catch targets that were much closer to the OFL when the OTCs were more than 384 

twice the OFL (Fig.8C). The production models tended to produce target catches above 385 

the OFL, although interestingly the data-limited version SPMSY was generally more 386 

conservative than the Schaefer surplus production model that was fit to survey data 387 

(Fig.8D).  388 

4. Discussion 389 

We evaluated the ability of several data-limited methods to set target catches close to 390 

the OFL for data-rich stocks in the Northeast U.S. Most options we explored were very 391 

sensitive to the level of historical exploitation, producing target catches above the OFL 392 

for stocks that had a history of overfishing, or target catches below the OFL for stocks 393 

with a history of light exploitation.  The more conservative options reduced the 394 

magnitude of overfishing relative to the historical level for over-exploited stocks, but at 395 

the cost of being too conservative for lightly exploited stocks. Catch curve methods were 396 

the only approaches we explored that were insensitive to the level of historical 397 
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exploitation, and were largely effective at setting target catches close to the OFL for 398 

overexploited stocks.  399 

Given our findings, which approaches are suitable or unsuitable to use when a data-400 

poor /-moderate method is needed? The approaches we tested had different data 401 

requirements, from truly data-poor methods that required only a catch time series (the 402 

average catch methods), to more data-moderate approaches that required an index of 403 

abundance or catch-at-age data.  Most stocks in our analysis experienced intense 404 

exploitation for at least part of their history, so approaches that used the average or 405 

median catch over the entire time period often resulted in very high target catches relative 406 

to the OFL.  DCAC aims to adjust the average catch by an assumed depletion level, and 407 

we assumed relatively large levels of depletion over the catch time period across all 408 

stocks and all years (60% and 80%).  For stocks that experienced light historical 409 

exploitation it is therefore not surprising that our application of DCAC was too 410 

conservative.  However, for overexploited stocks, even the larger depletion assumption 411 

was insufficient in our analysis. Our data-rich application of DCAC performed similarly 412 

to our application using static levels of depletion, suggesting that this result is not due to 413 

the assumptions we used in the method.  MaCall (2009) notes that DCAC estimates a 414 

catch that would be sustainable, on average, over the period of available catch data, and 415 

cautions that the particular yield may no longer be sustainable for severely depleted 416 

stocks.  Therefore, MacCall (2009) recommends against using DCAC for stocks 417 

undergoing rebuilding. Simulation studies have shown that DCAC tends to perform well 418 

when stocks are close to BMSY, but that unsustainable catches can result when B<<BMSY 419 

(Wiedenmann et al., 2013; Carruthers et al., 2014).  Our results are in agreement with 420 

these simulation studies, and support MacCall’s caveat against using DCAC for stocks 421 

likely to be overfished, or at least for the need of an additional correction factor.  Rago 422 

(2017) explored DCAC as a fallback for Atlantic halibut (Hippoglossu hippoglossus) in 423 

the Northeast U.S., a stock believed to be heavily overfished, and further adjusted the 424 

DCAC-estimated catch by multiplying by an assumed B / BMSY, although DCAC was 425 

ultimately not recommended for management. Further exploration of the impacts of such 426 

adjustments is warranted to better understand the utility of DCAC for heavily depleted 427 

stocks. We note, however, that our results may be sensitive to the time periods of catch 428 

data input into DCAC, as they may not be representative of the “windfall” catch period 429 

used in the derivation of the method (MacCall, 2009).  However, including catches from 430 

earlier time periods would have resulted in higher target catches for many stocks using 431 

DCAC (using the same assumed depletion levels) due to the very high catches from 432 

foreign fleets prior in earlier years (Soesebee et al., 2006).  433 

The index-based approaches were sensitive to the intensity of recent exploitation, but 434 

all of the approaches would have resulted in comparable or more conservative target 435 

catches relative to recent levels (slopes < 1 in Fig.5).  Thus, the index-based methods 436 

would not have been worse than what was already occurring for a stock, and the more 437 

conservative options we explored would have reduced the magnitude of overfishing that 438 

was occurring in such cases.  For example, both Islope4 and Itarget1 produced target 439 

catches for stocks close to the OFL when stocks had experience recent harvest rates 440 

between 1.5 to 2.5 times FMSY, but these options were overly conservative when stocks 441 

were fully or under-exploited.  The PlanB_3 approach was the least conservative index-442 

based method we explored for stocks experiencing recent overfishing.  This approach is 443 
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currently used to set target catches for GB cod following problems with the age-based 444 

assessment (NEFSC, 2015a, 2017), and our findings suggest that perhaps a more 445 

conservative option may be better suited for this stock given that it is still believed to be 446 

overfished, although whether or not overfishing is occurring is unknown.  Care is needed 447 

when selecting which index-based approach to use, with careful weighing of the evidence 448 

indicating whether or not overfishing is likely to be occurring, although determining 449 

recent exploitation rates may be incredibly difficult for a data-limited stock.  Recent 450 

exploitation rates from other assessed species, either in the region or within the same 451 

fishery if possible, may be used as a proxy for the focal stock, as Free et al. (2017) 452 

showed that the best predictor of relative population size was the status of other stocks in 453 

the same fishery.  A caveat to index-based approaches is that they do not aim to achieve 454 

MSY in the long run for a stock.  For example, the more conservative options may allow 455 

for rebuilding of an overfished stock, but their long-term application would likely result 456 

in a considerable amount of forgone yield (Carruthers et al., 2015).  Alternatively, the 457 

less conservative index-based options could preserve the status quo harvest rates, keeping 458 

the population relatively stable for an overfished population, but at a level below where 459 

maximum production occurs, resulting in a loss of long-term yield in such cases of 460 

“sustainable overfishing” (Hilborn et al., 2015).   461 

We found that catch curve methods were very effective overall, producing target 462 

catches close to the OFL, on average, independent of the exploitation history for a stock.  463 

While catch-at-age data may not be available in many data-limited cases, when it is, our 464 

findings support the use of catch curve methods (which are currently used for several 465 

species in Southeast Australia; Wayte 2009).  In particular, the M_CC method performed 466 

very well across stocks, and by simply assuming FMSY = M (or potentially lower values 467 

based on Zhou et al., 2012), this method avoids requiring many of the inputs used to 468 

estimate FMSY in the other approaches (Tables 2 and 3).  In some cases, however, catch 469 

curve methods also produced very large target catches, so our findings are not a blanket 470 

endorsement for these methods.  The poor performance of catch curve methods in some 471 

instances does not rule out their use, however, as there are commonalities in the reasons 472 

for the high target catches in most cases.  Large catches resulted when the catch curve 473 

greatly underestimated the total mortality for the stock, which tended to occur for stocks 474 

1) with pulsed recruitment events, and 2) with a limited number of age classes with which 475 

to estimate Z.  Expanding the catch-at-age matrix to include more ages, if possible, could 476 

address 2).  For 1), we found that using a modest minimum F threshold in the catch curve 477 

estimation greatly improved the performance of the catch curve methods for many stocks.  478 

Another possible solution to 1) is to omit the large age class from the estimation of Z in a 479 

given year, or to estimate Z by following cohorts through the catch across multiple years. 480 

Further exploration into alternative ways to apply catch curve methods is warranted given 481 

our findings.  482 

Interestingly, simulation studies of catch curve methods using the MSE portion of 483 

DLMTool have generally found them to perform poorly, resulting in a high risk of 484 

overfishing and low long-term yield (Miller, 2016; Sagarese et al., in press), and as a 485 

result they were not explored in greater detail in these studies.  It is possible that the 486 

behavior that we observed, where these methods occasionally produced very large target 487 

catches (> 5 x OFL) using the default minimum F (0.005yr-1) may be behind the overall 488 

poor average performance in the simulation studies.  Infrequent, anomalously high catch 489 
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levels applied over a multiple years in a simulation would result in frequent overfishing 490 

and cause the population to crash, resulting in low long-term yield (metrics often used to 491 

determine suitability of the methods).  For Atlantic mackerel, Wiedenmann (2015) 492 

explored the MSE portion of DLMTool and similarly found poor performance of the 493 

catch curve methods, although the MSE was not used as a justification to include or 494 

exclude methods in the target catch determination, and the catch curve methods were 495 

explored in further detail. Target catches from the catch curve methods for mackerel were 496 

often conservative compared to the other methods explored.  An age-based assessment 497 

for mackerel recently passed review (NEFSC, 2018), and estimated the OFL in 2017 to 498 

be 22,000 mt, compared to the catch curve-estimated catches between 13,000-26,000 mt 499 

(Wiedenmann, 2015), indicating that the catch curve methods were relatively close to the 500 

OFL. Thus, we recommend that catch curve methods are explored as an option when 501 

catch-at-age data are available, but to proceed with caution when very low estimates of Z 502 

result, or when an anomalously large target catch is produced.  503 

Approaches that used a production model in the control rule (SPMSY, and our fit of 504 

the Schaefer model to the available survey indices) were also sensitive to the exploitation 505 

history, producing higher target catches (relative to the OFL) for more depleted stocks.  506 

This result is likely due to the “one way trip” declines for many stocks (Figure 3) that do 507 

not provide sufficient information about the strength of density-dependence.  The lack of 508 

recovery despite low catches for some stocks also suggests a change in stock productivity, 509 

violating the underlying assumptions of the production model, potentially resulting in 510 

inflated estimates of the OFL.   511 

In reviewing the recent management performance for New England groundfish, 512 

Rothschild et al. (2014) noted the poor performance of the projection estimates relative to 513 

the updated age-based assessment estimates, and suggested surplus production models 514 

may be an alternative to age-based assessments for groundfish.  We fit the Schaefer 515 

surplus production model to the available spring and fall indices and catch data, and 516 

compared estimates to the results from age-based assessments.  It is interesting that 517 

SPMSY, which was not fit to index data, was generally more conservative than the 518 

Schaefer production model, although both production models in our analysis tended to 519 

produce higher estimates of total biomass and the OFL compared to the age-based 520 

models. This result is in agreement with other explorations of surplus production model 521 

applications to New England groundfish (Rothschild and Jiao, 2013; Deroba et al., 2015), 522 

but does not resolve the question of which modeling approach is more accurate.  The 523 

underlying population dynamics in production and age-structured models are abstractions 524 

of the natural world, and the ability of each model to accurately estimate total biomass 525 

and reference points will depend on the relative information in aggregate indices and in 526 

age structured data, and also on which, and to what extent model assumptions are 527 

violated.  Here we used estimates from the most recent age-based assessments as our 528 

measure of the underlying population dynamics, as these estimates represent the current 529 

best available science for each stock.  If production models were to become the standard 530 

assessment method, then our estimates of the OFL would be revised upward for many 531 

stocks, changing our interpretation of the ability of many of these data-limited methods to 532 

estimate the OFL.   533 

An interesting finding of our work is that many of the data-limited approaches 534 

produced target catches that were improvements (i.e., closer to the OFL) over the OTCs 535 
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from projections based on age-based assessments, particularly when the OTC was higher 536 

than the OFL. Wiedenmann and Jensen (2018) found that for New England groundfish 537 

(all NEFMC stocks listed in Table 1 except Atlantic herring), the target catches set were 538 

aimed at achieving harvest rates generally at or below FMSY, but overly optimistic 539 

projections, primarily from overestimated terminal abundance in earlier assessments, 540 

resulted in the OTC being well above the OFL for many stocks (Brooks and Legault, 541 

2016; Wiedenmann and Jensen, 2018).  Across groundfish stocks, actual catches were 542 

29% below the OTC, on average, yet the achieved F was 151% above the original target 543 

F(see Fig.1and Table 3in Wiedenmann and Jensen, 2018).  Many of the approaches we 544 

evaluated here use recent catches (not the target), such that using the average catch over 545 

the last 3 or 5 years was an improvement over the OTC, but more substantial 546 

improvements occurred for some of the catch curve methods and the more conservative 547 

index-based approaches. Geromont and Butterworth (2015) explored what they called 548 

empirical approaches (analogous to the Islope1 and Itarget1 methods) for four stocks 549 

(including two stocks used here) and found that the catches were generally comparable 550 

and less variable than those from the more complex age-based assessments. They did not 551 

argue for the abandonment of age-based assessments, but rather that simple, empirical 552 

methods could be used in the interim between assessments, freeing up resources by 553 

allowing for a greater interval between age-based assessments (5-10 years).  Our findings 554 

support their recommendation, and having a longer interval between assessments could 555 

allow for more resources devoted to addressing many of the uncertainties in the 556 

assessments for these stocks.   557 

An important caveat to our approach is that the target catch from each method is not 558 

removed from the population over time.  In a MSE simulation model, the catch estimated 559 

each year from a data-limited method is removed from the population, such that there is 560 

feedback between unsustainable options that would drive the population to low levels, 561 

and vice-versa.  Large changes in population status would likely be reflected in the 562 

survey index, catch-at-age data, and other metrics that inform the methods.  Those 563 

methods that are updated with new information might therefore correct themselves in the 564 

long run in response to large changes in the population that occurred earlier in the time 565 

period.  While MSEs are an indispensible tool for evaluating benefits and tradeoffs 566 

among management alternatives (Punt et al. 2016; Punt 2017), retrospective evaluations 567 

like we performed here are a useful compliment to MSEs to identify effective 568 

management strategies.  Many of our findings about average catch and index-based 569 

approaches are consistent with previous MSE work (Wiedenmann et al., 2013; Carruthers 570 

et al., 2014, 2015), but our findings on catch curve methods suggest better performance 571 

than in some recent MSE analyses using DLMtool (Miller, 2016, Sagarese et al., in press).  572 

Thus, both MSE and retrospective approaches may provide useful insights into 573 

performance of data-limited methods, and both approaches should be used to test new 574 

methods, or existing methods on stocks or fisheries that have not been explored.   575 
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Tables 778 

Table 1. List of stocks explored in this analysis.  Management refers to the regional 779 

fishery management council responsible for managing the stock (either New England, 780 

NEFMC, or Mid-Atlantic, MAFMC). The abbreviated name is how stocks are referenced 781 

in the text, and the code name is how they are referenced in Figs 2, 6, and 8.  Years refers 782 

to the years of catch and index data, used in our analysis. The first possible year of catch 783 

or index data for all stocks was 1978, and we excluded data from earlier years to omit the 784 

very large catches from the foreign fleets prior to the passing of the original Magnuson 785 

Act (Sosebee et al., 2006). For all stocks we also used assessment estimates from 1990 to 786 

the final year listed here to calculate the OFL (Eqn 1).   787 

  788 
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 789 

Full Stock Name Scientific Name 

Abbreviated 

name (code) 

Management Years 

Georges Bank 

Atlantic cod Gadus morhua GB cod (GBC) 

 

NEFMC 

1978-2010 

Gulf of Maine 

Atlantic cod Gadus morhua 

GOM cod 

(GMC) 

 

NEFMC 

1982-2012 

Georges Bank 

haddock 

Melanogrammus 

aegelfinus 

GB haddock 

(GBH) 

NEFMC 1981-2012 

Gulf of Maine 

haddock 

Melanogrammus 

aegelfinus 

GOM haddock 

(GMH) 

NEFMC 1978-2012 

Georges Bank 

yellowtail flounder Limanda ferruginea 

GB yellowtail 

flounder 

(GBYTF) 

NEFMC 1979-2010 

Cape Cod / Gulf of 

Maine yellowtail 

flounder Limanda ferruginea 

CC / GOM 

yellowtail  

flounder 

(GMYTF) 

NEFMC 1978-2012 

Southern New 

England / Mid-

Atlantic yellowtail 

flounder Limanda ferruginea 

SNE / MA 

yellowtail 

flounder 

(SNYTF) 

 

NEFMC 

1981-2012 

Georges Bank winter 

flounder 

Pseudopleuronectes 

americanus 

GB winter 

flounder 

(GBWIN) 

 

NEFMC 

1982-2012 

Southern New 

England / Mid-

Atlantic winter 

flounder 

Pseudopleuronectes 

americanus 

SNE / MA 

winter flounder 

(SNWIN) 

 

NEFMC 

1981-2012 

witch flounder 

Glyptocephalus 

cynoglossus 

witch flounder 

(WCH) 

NEFMC 1982-2010 

American plaice 

Hippoglossoides 

platessoides Plaice (APL) 

NEFMC 1980-2012 

Acadian redfish Sebastes fasciatus Redfish (RED) NEFMC 1978-2012 

white hake Urophycis tenuis 

white hake 

(WHK) 

NEFMC 1978-2012 

pollock Pollachius virens pollock (PLK) NEFMC 1978-2012 

Atlantic herring Clupea harengus herring (HER) NEFMC 1978-2012 

Summer flounder Paralichthys dentatus Summer (SFL) MAFMC 1982-2012 

Scup Stenotomus chrysops Scup (SCP) MAFMC 1978-2012 

Bluefish Pomatomus saltatrix Bluefish (BLUE) MAFMC 1982-2012 

Black sea bass  Centropristis striatus BSB (BSB) MAFMC 1980-2012 

 790 
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Table 2.  Brief description and equations for the data-limited control rules used, with the 792 

source for each control rule when available.  Many of the approaches use multiyear 793 

averages of catch and index data, which is denoted $%&&&&, and '%( , respectively, where N is 794 

the number of the most recent years used to calculate the average (typically 3, 5, 10, or all 795 

(Y) available years). For the index-based methods, when two indices of abundance were 796 

available for a stock (i.e., spring and fall survey), we calculated a single, unweighted 797 

average index across surveys for use in the methods.  All of the catch curve methods used 798 

the last three years of available catch-at-age data, and catch data were summed across 799 

those years for each age to produce a single catch-at-age vector to estimate Z. For 800 

assumed inputs to the different methods, the assumed CV used to generate a distribution 801 

for each input is in parentheses (see Table 3 for input values and definitions). 802 
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Data-limited 

method 

abbreviation 

Description Inputs Source 

Average catch 

methods 

   

AvC, AC_3yr, 

AC5yr 

 

$��)* = +
, ∑ $�����.��,#+ , where Y is total number of years available, and 

T is number of years to use (T = all years (Y), or the most recent 3, or 5 

years) 

Total catch (by weight)  

AC75_3yr, 

AC75_5yr 

75% of the average catch over the last 3 or 5 years 

$��)* = 0.75 +
, ∑ $�����.��,#+ , with T = 3 or 5.  

Total catch (by weight)  

MC, MC_50 The median, and 50% of the median catch over the whole time period Total catch (by weight)  

DCAC_20,  

DCAC_40 

 

Depletion-corrected average catch. A method for adjusting average 

catches based on an assumed change in biomass over the time period.   

$��)* =  
 $���
�.�

�.+
45 + ∆

��� ⋅ 8��/8:
;�+

 

Where FMSY is calculated as the product of the assumed M and the 

assumed ratio of  FMSY to M. ∆ is the assumed depletion over the time 

period relative to B0 �8�1� − 8�5���/ 8:, and we assumed values of 0.8 

and 0.6 for the DCAC_20 and DCAC_40 runs, respectively. 

Total catch (by weight), 

assumed FMSY/M(0.2), 

BMSY/B0(0.05),M(0.2), 

and ∆(0.2) 

MacCall (2009) 

DCAC_DR The “data-rich” version of DCAC, calculated using estimates of the 

exploitable biomass (Be) in the first (t=1) and last (t = Y) years of 

available catch data, $��)* =  <∑ =���>?">?@ ��AB�+��AB���C
�  

Total catch (by weight), 

estimates of exploitable 
biomass 

MacCall (2009) 

Catch Curve 

Methods 

   

BK_CC1 

BK_CC3 

BK_CC5 

Variations of the Beddington and Kirkwood life history method 

combined with catch curve analysis.   

$��)* = :.DE⋅=F&&&<+�GHICH@
:.DJ�KL�>MN , where $O&&& is the average catch in the last 3 years, 

F is estimated using the assumed M and the catch curve estimate of Z (F 

= Z-M), k is the von-Bertalanffy growth rate, and Lratio is the ratio of the 

length at first capture to L∞. The differences across BK_CC1, BK_CC3, 

and BK_CC5 are the assumption about Lratio (0.1, 0.3, and 0.5, 

respectively).  

Total catch (by weight), 

numerical catch-at-age, 

assumed  k(0.1), 

L∞(0.1), t0(0.1), b(0.1), 

c(0.1),M(0.2), Lat first 

capture (0.2).   

Beddington and 

Kirkwood 

(2005) 

    

YPR_CC Nearly identical to Fdem_CC, $��)* = ���$O&&&�1 − �����+, but with FMSY 

based on the F0.1 estimate from a yield-per-recruit model, assuming knife-

edge selection at the length of full selection (Table 3).   

Total catch (by weight), 

numerical catch-at-age, 

assumed amax, k(0.1), 

L∞(0.1), t0(0.1), b(0.1), 

c(0.1),M(0.2), LFS(0.2) 

Carruthers and 

Hordyk (2017) 

Fdem_CC 

 
$��)* = ���$O&&&�1 − �����+, where $O&&& and F are described in the 

BK_CC methods, and FMSY is calculated as r / 2, with r calculated using 

the demographic approach of McAllister et al. (2001). 

Total catch (by weight), 

numerical catch-at-age, 

identical assumed inputs 

as YPR_CC, but also 

with h(0.2).   

Carruthers and 

Hordyk (2017); 

McAllister et 

al. (2001) 

M_CC Nearly identical to Fdem_CC and YPR_CC,  $��)* = ���$O&&&�1 − �����+, but with FMSYset equal to the assume value 

of M 

Total catch (by weight), 

numerical catch-at-age, 

M(0.2) 

 

Index-based 

methods 

   

Islope1 

Islope4 
The average catch from the most recent 5 years ($P&&&) is adjusted based on 

the slope (λ) of a log-transformed index of abundance over the same 

period.  $��)* = �1 + ∅R�S$P&&&.  

For Islope1 ∅  = 0.4, and  S = 0.8.  For Islope4 ∅  = 0.2, and  S = 0.6.  

Total catch (by weight), 

survey indices of 

abundance. 

Geromont and 

Butterworth 

(2014) 

Itarget1 

Itrarget4 
Uses the recent 5 and 10 year average index ('P(  and '+:&&&&, respectively) and $P&&& to calculate Ctarg with 

$��)* = T0.5S$P&&&�1 + �'P( − 0.8'+:&&&&�/�V'+:&&&& − 0.8'+:&&&&��'P( > 0.8'+:&&&&
0.5S$P&&&�'P(/0.8'+:&&&&�X'P( > 0.8'+:&&&&  

 

For Itarget1 V  = 1.5, and  S = 1.  For Itarget4 V  = 2.5, and  S = 0.7.     

Total catch (by weight), 

survey indices of 

abundance. 

Geromont and 

Butterworth 

(2014) 

GB_slope Similar to the Islope methods, with $��)* = �1 + R� ⋅ $P&&&, with estimates 

of Ctarg more extreme than ± 20% of the most recent catch capped at ± 

20%.   

Total catch (by weight), 

survey indices of 

abundance. 

Carruthers and 

Hordyk (2017); 

Geromont and 

Butterworth 

(2014) 
PlanB_3 Adjust the 3-year average catch ($O&&&) based on the transformed slope (λ) Total catch (by weight), NEFSC (2015a) 
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  804 

of a log-linear fit to the last 3 years of a loess-smoothed index of 

abundance. $��)* = R ⋅ $O&&&.  The span for the loess fit was set to 9.9 / The 

span for the loess fit was set to 9.9/Y 

survey indices of 

abundance. 

Production models    

Schaefer 

production model 

(called Production) 

A Schaefer surplus production model (B(t) = B(t-1) + rB(t-1)(1-B(t-1)/K 

– C(t-1)) fit to the available indices of abundance and catch data through 

year Y, estimating r, K, and biomass in the first year with available data.  

The target catch in the final year Y is $��)* = 8�5�Y/2, where r /2 is the 

estimated FMSY.  

Total catch (by weight), 

survey indices of 

abundance. 

Schaefer (1954) 

SPMSY A “simple method for estimating MSY” that assumes an underlying 

production model, and randomly draws values of r and K and starting and 

ending estimates of relative depletion (B(1)/K and B(Y)/K) to find the 

combination of parameters that  are sensible given the catch history (i.e., 

parameters that results in biomass ≤ catch in any given year are 

excluded).  The target catch in the final year is KB(Y)/K•  r /2.  

Total catch (by weight), 

assumed B(1)/K and 

B(Y)/K, drawn from 

uniform distributions 

(bounds for the draws 

varied based on the 

catch in those years 

relative to the maximum 

catch, see Martell and 

Froese 2013 for details). 

Martell and 

Froese (2013) 
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Table 3.  Stock-specific life history parameters use in DCAC and the catch curve 805 

methods. Parameters are as follows: amax is the maximum age; h is the steepness of the 806 

stock-recruit relationship; M is the natural mortality rate,FMSY / M is the ratio of FMSY to 807 

M; BMSY / B0 is the fraction of unfished biomass where maximum production occurs; L∞, k, 808 

and t0 are the von Bertalanffy growth model parameters (L(a) = L∞(1-e-k(a-t0)), b and c are 809 

the parameters relating length to weight (W(a) = bL(a)c), and L50 and LFS are the lengths 810 

at 50 and full selectivity, respectively.  Values for FMSY / M were based on the estimated 811 

FMSY and the assumed M from the assessment, and the value in parentheses is the family-812 

level mean from Zhou et al. (2012).  The assumed M was age- and time-invariant for all 813 

stocks but summer flounder and Atlantic herring we used the mean value across fully-814 

selected ages as our assumed M. Estimates of BMSY / B0 are based on the management 815 

SPR targets.  In DLMtool all of these specified inputs were set as the mean of lognormal 816 

distribution for the methods that used them, and we used the DLMtool default CVs for 817 

each of these inputs to create the distributions (CVs listed in Table 2).   818 

  819 
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 820 

Managemen

t Stock ama h1 M FMSY / M 

BMSY 

/ B0 L∞ k t0 

b (x10-

6) c LFS 

GOM Cod 16 0.84 0.2 0.925 (1.01) 0.40 150.9 
0.1
1 0.13 5.13 3.16 60.0 

GB Cod 16 0.84 0.2 0.85 (1.01) 0.40 114.0 

0.2

2 0.17 7.29 3.08 58.0 

GOM 

Haddock 22 0.74 0.2 1.50  (1.01) 0.40 64.2 

0.4

0 -0.30 9.30 3.02 51.0 

GB Haddock 25 0.74 0.2 1.50 (1.01) 0.40 73.8 

0.3

8 0.17 8.13 3.07 51.0 

GB 

yellowtail 

flounder  12 0.75 0.2 1.25 (1.16) 0.40 50.0 

0.3

3 0.00 5.76 3.13 35.0 

NEFMC 

SNE/MA 

yellowtail 

flounder  12 0.75 0.3 1.17 (1.16) 0.40 35.4 

0.9

1 0.25 5.76 3.13 34.0 

CC/GOM 

yellowtail 

flounder  12 0.75 0.2 1.40 (1.16) 0.40 48.0 

0.3

5 -0.10 5.76 3.13 36.5 

GB winter 

flounder 19 0.8 0.3 1.40 (1.16) 0.40 58.0 

0.2

8 0.00 8.85 3.11 36.0 

SNE/MA 

winter 

flounder 16 0.8 0.3 1.08 (1.16) 0.40 46.5 

0.3

2 0.00 10.40 3.04 33.4 

Plaice 30 0.8 0.2 1.00 (1.16) 0.40 62.2 

0.1

7 0.00 2.86 3.31 40.0 

Witch 25 0.8 0.15 1.20 (1.16) 0.40 60.0 

0.1

5 0.02 2.39 3.26 41.5 

Acadian 

redfish 50 0.47 0.05 0.76 (0.69) 0.50 35.9 

0.1

6 -0.24 8.29 3.20 29.7 

White hake 20 0.79 0.2 1.00 (1.01) 0.40 135.3 

0.0

9 -0.89 3.13 3.23 47.0 

Pollock 24 0.81 0.2 1.00 (1.01) 0.40 108.3 

0.1

6 -0.44 7.43 3.09 68.0 

  

Atlantic 

herring 15 0.44 0.45 0.55 (0.88) 0,4 28 

0.5

18 0.4 7.53 

3.031

4 25 

Black sea 

bass 15 0.8 0.2 0.80 (0.92) 0.4 46.5 

0.1

5 -0.51 15.60 

3.136

5 22 

MAFMC Bluefish 14 0.8 0.2 0.85 (0.92) 0.4 113 

0.1

26 -0.6 10.90 

3.054

8 41 

Summer 

flounder 14 0.8 0.25 1.24 (1.16) 0.35 85.5 

0.1

4 -1.20 3.89 3.25 36.0 

  Scup 15 0.95 0.2 0.80 (0.92) 0.40 46.5 

0.1

5 -0.51 15.60 3.14 22.0 
1 Steepness values were obtained from Myers et al. (1999). When not provided at the species level, we used the value at the Family 

level. When the Family level was not provided (bluefish and black sea bass), we assumed a value of 0.8. 
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Figure Captions 823 

 824 

Figure 1. The mean annual F relative to FMSY across stocks used in this study from New 825 

England (solid line) and the Mid-Atlantic (dashed line).  The light and dark shaded 826 

regions represent the range of observed F /FMSY for New England and the Mid-Atlantic, 827 

respectively.  The horizontal line at 1 represents FMSY, above which overfishing is 828 

occurring.  829 

 830 

Figure 2.  Catch curve estimates of total mortality (Z) across years for each stock.  Upper: 831 

Comparison of Z estimates when the plus group was included in the log-linear fit to when 832 

the plus group was omitted from the fitting.  Lower: Comparison of the estimated Z 833 

including the plus group to the observed fully-selected Z obtained from the assessment.  834 

The solid line is the 1:1 line, and the dashed line (right plot only) is the linear fit, omitting 835 

all negative values of Z.  Labels have been added to some of the points to identify 836 

specific stocks where 1) negative values of Z were estimated (with or without the plus 837 

group), 2) when there was a large discrepancy in between estimates with or without the 838 

plus group included (upper), and 3) when there was a large discrepancy between the 839 

estimated Z and the observed Z from the stock assessment (lower).  840 

 841 

Figure 3.  Surplus production model fits (gray lines) of total biomass each year, along 842 

with the current estimates of total biomass for each stock.  Multiple fits were done for 843 

each stock using different length time series (i.e., fit through 2000, 2001, 2002, and so 844 

on).  Production refers to the Schaefer surplus production model.  845 
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 846 

Figure 4. The median target catch relative to the OFL from each control rule across 847 

stocks and years.  The black shapes represent the median for each control rule.  Top 848 

panel: stocks without a history of overfishing (defined as having less than half of the 849 

years from 1990-2012 with overfishing).  Bottom panel: stocks with a history of 850 

overfishing (more than half of the years). The Production method refers to the Schaefer 851 

model. 852 

 853 

Figure 5.  For each method, the mean target catch relative to the OFL (averaged across 854 

years for each stock) as a function of the mean F during the relevant time period for each 855 

control rule.  The relevant time period is defined as the years of data used in the particular 856 

control rule (typically the most recent 3 or 5 years, or all available years in some cases).  857 

The horizontal line at 1 indicates when the target catch is equal to the OFL. On each 858 

panel the approach category is listed (Avg = average catch (A-J); Ind = index-based (K-859 

P); CC = catch curve (Q-V); Prod = surplus production model (W-X)), as well as the 860 

slope, p-value and R2 for a linear fit.  Most approaches had significant positive slope, 861 

indicating that the target catch / OFL increased with increasing mean F, although the 862 

magnitude of the increase varied greatly across methods (from 0.25 for Fdem_CC(T) to 863 

2.19 for the Schaefer production model(X)).  Most catch curve methods had slopes that 864 

were not significantly different from 0, indicating that the target catch / OFL was 865 

independent of the recent mean F. 866 

 867 
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Figure 6. A) Similar to Figure 5, but for three catch curve methods, with individual stock 868 

name abbreviations showing (see Table 1).  Each point represents the average across 869 

years (1990 – 2012) for each stock.  The dashed horizontal lines shown when the control 870 

rule was able to get within± 50% of the OFL, on average.  B) The target catch for a 871 

subset of stocks, based on the assumed minimum F estimated from the catch curve 872 

analysis (estimated F = estimated Z – assumed M).  The baseline method uses the 873 

DLMtool default minimum F of 0.005yr-1, while the modified method uses a minimum F 874 

of 0.05yr-1.  The solid black line is the 1:1 line, such that points close to the line indicate 875 

insensitivity to the assumed minimum F.  The target catch in A) was calculated using the 876 

modified, higher minimum F.  Production refers to the Schaefer model.   877 

 878 

Figure 7. Proportion of times (across years and stocks) when the target catch from the 879 

data-limited control rule was closer to the OFL than the original target catch (OTC) that 880 

was set for management, whether or not the OTC was above or below the OFL. The 881 

horizontal line at 0.5 separates when the method was more or less likely to be closer to 882 

the OFL than the original OTC.  883 

 884 

Figure 8. Ratio of the mean original target catch (OTC) to the OFL and the median data-885 

limited estimated catch to OFL for a subset of methods in each category. The mean 886 

values for each stock are calculated across all years where target catches are available for 887 

each stock (2000-2012 for Mid-Atlantic stocks, and 2004-2012 for New England stocks).  888 

The solid black line represents the 1:1 line, while the dashed horizontal and vertical lines 889 

indicate when the target catch and TAC are above or below the OFL, respectively.  890 
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Limits of the y-axis are the same for each plot for ease of comparison, but some points 891 

are not shown in D as a result.   892 
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Average catch Index-based Catch curve Production

(B) Stocks with frequent overfishing 
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(B) Index-based methods
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(C) Catch curve methods
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